## <u>Dynamical Mean-Field Theory Approach to Interaction-Localization</u> Vladimir Dobrosavljevic, Florida State University, DMR-9974311

- •<u>Technological revolution:</u> need to design and fabricate *new materials*.
- Need to understand conductors near metal-insulator transition
- •<u>How conducting is a material?</u> What are the mechanisms for electron trapping (localization)?
- •<u>Dynamical mean-field theory (DMFT)</u>: a new theoretical approach that selfconsistently calculates the <u>escape rate</u> of the electron from given site



Three physical processes in electron localization



- •DMFT can incorporate all three elementary processes
- •New picture of the metal-insulator transition
- •<u>Prediction</u>: electronic Griffiths phase leading to non-Fermi liquid metallic behavior (seen in doped semiconductors, Kondo alloys)

## <u>Dynamical Mean-Field Theory Approach to Interaction-Localization</u> Vladimir Dobrosavljevic, Florida State University, DMR-9974311

## **Outreach activities:**

- •The PI presented lectures at elementary schools in order to in order to popularize science and technology
- •The PI acted as a Judge at Annual Regional Science Fairs for Middle School and High School students
- •The PI participated in Physics Department Open House activities (demonstration "Physics of Paper Airplanes")
- •The PI participated in the NHMFL Annual Open House activities (demonstration "Physics of Behind Magnetism")

## **Educational:**

The PI partially supported three graduate students working on this project. One of them completed his Ph. D. degree in September 2001. These students received training in many-body theory, including computer modeling and analytical (diagrammatic and DMFT) calculations.



Phase diagram of disorder interacting electrons from "extended" DMFT (cond-mat/0206529). Metallic glassy behavior is predicted to **precede** the metal-insulator transition is sufficiently disordered samples. Very recently, these predictions have been experimentally confirmed in silicon metal-oxide-semiconductor field-effects transistors.